
Experimental evidence of the Dzyaloshinsky-Moriya antisymmetric exchange interaction in the

one-dimensional Heisenberg antiferromagnet KCuF3: EPR measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 3397

(http://iopscience.iop.org/0953-8984/1/22/002)

Download details:

IP Address: 94.79.44.176

The article was downloaded on 10/05/2010 at 18:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(1989) 3397-3408. Printed in the UK 

Experimental evidence of the Dzyaloshinsky-Moriya 
antisymmetric exchange interaction in the one- 
dimensional Heisenberg antiferromagnet KCuF,: 
EPR measurements 

I Yamadat, H Fujiil and M Hidakal 
t Department of Physics, Faculty of Science, Chiba University, Yayoi-cho, Chiba-260, 
Japan 
$ Department of Physics, Faculty of Science, Kyushu University, Hakozaki, Fukuoka- 
812, Japan 

Received 23 August 1988, in final form 2 November 1988 

Abstract. Based on our results of EPR experiments, we point out that KCuF3, a one- 
dimensional Heisenberg antiferromagnet in spite of its pseudo-cubic crystal structure, has a 
Dzyaloshinsky-Moriya (DM) antisymmetric exchange interaction Xd,JS, X S, between spins 
on the c-axis; the direction of d,J is perpendicular to the c-axis. The observed EPR linewidth 
shows (2 + sin2 @)-like angular behaviour (6 is the angle between the c-axis and the external 
field), which coincides well with the theory of line broadening due to the DM interaction with 
d ,  i c-axis. The linewidth shows a rapid decrease with lowering temperature and its value 
extrapolated to T = 0 K from the paramagnetic region is zero. As the theory by Soos et a1 
shows, this temperature dependence also indicates that the EPR line is governed by the DM 
interaction; i .e. ,  it arises from the four-spin correlation functions ((SpSf - SPSP)’) (where 
cr andP = x ,  y and z )  in the second moment due to the DM interaction which is different from 
((SpSf + SfSp)’) of the perturbation terms of both the dipole-dipole and the anisotropic 
exchange interactions. 

1. Introduction 

Among the many compounds of KMF, (M is a 3d metal ion) studied to date, KCuF, is 
unique. In spite of its pseudo-perovskite crystal structure (the distances between mag- 
netic atoms are essentially the same along the principal axes), it has one-dimensional 
magnetic properties. Hirakawa and co-workers have successfully grown single crystals 
of KCuF3 large enough for precise experiments by employing their own method of 
precipitation, and have clearly explained the origin of the magnetic one-dimensionality 
(Kadota et aZ1967, Hirakawa and Kadota 1967). The latter arises from the cooperative 
Jahn-Teller distortion of F- octahedra. Due to the cooperative Jahn-Teller effect, each 
F- ion is slightly displaced from the centre of adjacent Cu2+ sites in the c-plane. Then 
the hole orbital of Cu2+, i.e., d,z-,z or d,z-yz, shows an alternate ordering in the c- 
plane. The overlap of orbitals along the c-axis results in a strong superexchange inter- 
action I,, whereas the superexchange interaction J ,  perpendicular to the c-axis is very 
weak because of the poor overlap of orbitals. J ,  is estimated as - 190 Kin -2I ,ZSjSj  with 
fitting the susceptibility, which shows a broad peak at about 243 K (Kadota et a1 1967) 
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Figure 1. Crystal structure of KCuF, types (a) and (d )  reported by Okazaki et al. The 
accepted magnetic structure is also shown; the larger arrow on each Cu site indicates the 
spin direction. Since the magnetic anisotropy in the c-plane is very weak, the spin direction 
in the c-plane is tentatively shown as parallel to that of the a-axis. The smaller arrows show 
the F- ion displacement from the midpoint between adjacent Cu sites and circles with arrows 
show the F- ion displacement in the respective c-plane. 

using the theory of Bonner and Fisher (1964). The magnetic specific heat obtained by 
measuring the linear birefringence also shows a broad peak around 180 K and is well 
reproduced by the Bonner-Fisher theory with almost the same value ofJ, (Iio eta1 1978). 
More direct evidence of magnetic one-dimensionality was found in inelastic neutron 
scattering experiments (Ikeda and Hirakawa 1973, Hutchings et a1 1979, Satija et a1 1980) 
from which J ,  = -230 K and ~J,/J,i = 0.01 were determined. 

The magnetic structure so far accepted is as follows. Below TN = 39 K,  spins lie in 
the c-plane due to the small XY-like anisotropy and couple ferromagnetically with each 
other in the c-plane, which was proposed on the basis of antiferromagnetic resonance 
(Ikebe and Date 1971) and of neutron diffraction experiments (Hutchings et a1 1969). 
The relationship between the ordering of hole-orbital and the exchange interaction has 
been explained by Khomskii and Kugel (1973), who showed theoretically that the 
ferromagnetic superexchange interaction in the c-plane arises from the orbital ordering 
of dZz-Xz or d , 2 ~ ~ 2 .  

The crystal structure of KCuF, has also been studied intensively. Okazaki and 
Suemune (1961) pointed out that the compound has two kinds of polytype structure (see 
also Okazaki 1969, Okazaki and Tsukuda 1969, Tsukuda and Okazaki 1972), referred 
to as types (a) and (d), as shown in figure 1. In a crystal of type (a) ,  the direction of 
displacement of F- ions from the mid-point between the nearest Cu2+ sites rotates 
oppositely in adjacent c-planes, whereas the rotation is always in the same sense in type 
( d ) .  When we pay attention to type (a) ,  we find that there is no inversion centre halfway 
between adjacent Cu2+ sites on the c-axis or in the c-plane. Thus it is possible that the 
Dzyaloshinsky-Moriya (DM) antisymmetric exchange interaction Xd,S, X Si in KCuF, 
occurs in type (a)  structure. If so, the accepted magnetic structure shown in figure 1 
should be modified. 

Further, spin dynamics should also be strongly affected by the DM interaction. An 
absorption line of electron paramagnetic resonance (EPR) is one of the representative 
quantities that reflect this interaction. In an early study of ESR on KCuF, (Ikebe and 
Date 1971), the temperature dependence of EPR linewidth was reported, and the effects 
of its one-dimensionality on the temperature behaviour of the linewidth was discussed 



Dzyaloshinsky-Moriya interactions in KCuF3 3399 

but without further detailed analysis. As is well known, perturbation terms such as 
dipole-dipole (DD), anisotropic exchange (AE), DM interactions, etc, cause absorption 
line broadening. When the DM interaction term is remarkably predominant in mag- 
nitude, an angular or a temperature behaviour of the absorption line is different from 
when it is absent as was shown theoretically by Soos et a1 (1977a, b). After summarising 
their theory, we show the experimental EPR results and verify the existence of the DM 
interaction in KCuF3. 

2. Theoretical background 

Based on the conventional theory of exchange narrowing, Soos et a1 treated the effect 
of the DM interaction on EPR lines focusing on the effect of spin correlations on local 
fields due to perturbations such as DM, AE, and DD interactions, etc, and considered the 
temperature dependence of the second moment. One of their results was that spin 
diffusion does not enhance the secular part of the DM interaction when each spin site is 
at an inversion centre (see Appendix 2). This suggestion is important in EPR studies of 
KCuF, because this compound is one-dimensional, even though its one-dimensionality 
is not so pronounced (IJa/Jci = 0.01). When the secular part is not enhanced, the half 
linewidth is estimated as M2/u,, where M 2  is the second moment including both secular 
and nonsecular parts, and U, is the corresponding exchange interaction frequency. 

Here we summarise the theory of exchange narrowing taking account of the proposal 
by Soos et al. Exchange narrowing is treated by a Hamiltonian 

where the main term Xo consists of the isotropic exchange -2JZS,S, and Zeeman 
interactions, and X '  contains all other terms that cause the line broadening. The EPR 
absorption line Z(w - o 0 )  at U@ can be written as 

7 e = 7 e @ + 7 e f  (1) 

Z(U - U@) = q(t)  exp[i(w - wo>t] d t  (2) 

d 4  = (h'+ (t)M- (O)) / (M+ M -  ) ( 3 )  

i: 
in which the relaxation function q(t) is given by 

where M ,  and M -  are the transverse magnetisations and h'(t) is the interaction rep- 
resentation. As is well known, q(t) is represented by the correlation function qj( z) which 
is expressed (Kubo and Tomita 1954) as 

and qj( t) is given by 

(4) 

where 
%'(t) = exp( -iXie,z/fi)X'(0) exp(iXo r/f i) .  

When the exchange interaction is very large and spin diffusion is not effective, q(t)  is 
approximated as 

with a characteristic time rc = f i / J .  qj(0) corresponds to the second moment M2(J /kT)  
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of the resonance line. The absorption line I ( o  - U,) then becomes Lorentzian with its 
derivative peak-to-peak linewidth AH,, approximated as 

AH,,  = (2/v3)ly(0)zc = ( 2 / v 3 ) M 2 ( J / k T ) t c .  (7) 

In the present case, X' contains DD, AE, DM interactions, the g-tensor inequivalence, 
the hyperfine interactions, etc. We shall show later that the effect of both the inequivalent 
g-tensor and the hyperfine interaction is too small to broaden the line in the present case. 
Thus we consider the DD, AE and DM interactions, i.e., 

x' = XbD + XiE + XbM (8) 

and we can write the expressions 

= $,ASj and XbM = d,Si X S , .  
i > j  i > j  

The respective second moment at the high-temperature limit (J /kT  = 0), MYD(0), 
M f" (0) and MyM (0) are given as follows: 

MtE(0) = iA2(1 + cos2 8 )  (10) 

id$(2 + sin2 8) 

id$( l  + cos2 8) 

ford,  I c-axis 

ford, I /  c-axis 
M y y o )  = 

where 8, is the angle between r,  and the external field H ,  ( Y ,  is the displacement between 
lattice sites i and j ) ,  and 8 is the polar angle of H ,  with respect to the c-axis. We have 
counted only spins on the c-axis for M f E ( 0 )  and MFM (0). The parameterSA = (Ag/g)'J 
and d, = (Ag/g)J can be used with g = (gll + g,)/2 and Ag = g - 2, where gli and g, are 
the g-values parallel and perpendicular to the principal crystal field axes. 

To discuss linewidths at finite temperatures above the critical region, we must first 
determine the temperature dependence of M,(J /kTj .  From equation ( 5 )  we obtain 

where the numerator yields four-spin correlation functions. There appears to be a basic 
difference between the four-spin correlation functions in MyM ( J / k T )  and in 
M f E ( J / k T )  [or M y D ( J / k T ) ]  (see Appendix l ) ,  i.e., 

whereas 

in which a, /3 = x ,  y ,  z .  The four-spin correlation function 

(13b) 

in M F D ( J / k T )  is similar to 
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Figure 2. Schematic drawing of the temperature dependence of the reduced second moment 
M P M ( J / k T ) / M 4 M ( 0 )  (line A) andM$'E(J/kT)/M$E(0) or M P D ( J / k T ) / M y D ( 0 )  (IineB). The 
line A tends to zero with T+ 0 K, whereas the line B keeps a non-zero value with T+ 0 K. 

that of M t E ( J / k T ) .  In the usual manner, they are decoupled into products of two-spin 
correlation functions, expressed as 

(SpSIp) = SS(S + I)C(rl , ,  T ) 6 ,  (14) 

where C(rl,, 7') is the normalised static correlation function depending on the distance 
between spin sites i and j ,  which is zero at the high-temperature limit. C(rl,, T )  is 
correlated to the static susceptibility x ( T )  as x ( T )  = xc[l + ZC(r , ,  T ) ] ,  where xC is 
the Curie law susceptibility, and can be determined from the high-temperature series 
expansion. Soos et a1 showed that the effect of C(rI,, T )  on M f ' ( J / k T )  is completely 
different from that on M t E ( J / k T )  or M F D ( J / k T ) ;  even in the most simplified case 
where only the nearest-neighbour spin correlations are considered, there arises a dif- 
ference as 

((SPSIp - SfSp>*) cc [l - C(1, T ) ]  

((SPSIp + sfspy) cc [l + C(1, T ) ]  

(15a) 

(15b) 

where C(l , T )  represents the nearest-neighbour spin correlation defined in equation 
(14). Thus the following approximation is obtained, 

[MF'(J/kT)/MfM(0)l = (Xc/X(T))P - C(17 T)1 

[(MSE(J/kT> + M ? D ( J / k T ) I / [ M t E ( 0 )  + MFD(0)l = (Xc/X(T))P + 

(16a) 

(16b) 
731. 

A relation ( M + M - )  = X ( T ) k T  is used to derive equations (16a) and (16b). In low- 
dimensional cases, C(1, T )  tends to one with decreasing temperature over a wide tem- 
perature range, and M F M ( J / k T )  gradually decreases to zero. On the contrary, 
M f E ( J / k T )  or M f D  ( J / k T )  show moderate changes with the temperature due to both 
the decrease in xC/x( T )  and the increase in [l + C( 1, T ) ] ;  these two second moments do 
not fall to zero with T+ 0 K (see figure 2). If the correlations between more distant 
neighbour spins are taken into account , the qualitative tendencies of the temperature 
behaviour of the second moments explained above are held unchanged. 
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I action. The extrapolated line (dotted) 

Over the critical region, i.e. near T N ,  where conventional low-dimensional anti- 
ferromagnets show rapid increases in linewidth (figure 3 ) ,  on the other hand, a tem- 
perature behaviour of the linewidth should be treated as a special category of critical 
phenomena and the theory represented above should be modified. However, the vari- 
ations in four-spin correlation functions ((SpSf - Sf  ST)') and ((SpSf + S f S y ) 2 )  with 
temperature near T N  should be different. Thus we can expect contrasting linewidth 
behaviours near TN between systems with and without DM interactions. 

3. Experimental procedure 

As explained in 8 1, KCuF3 has two types of crystal structure designated (a )  and (d ) .  
Single crystals of this compound used in early studies to clarify its magnetic one-dimen- 
sionality were grown from aqueous solution (the method is explained in Kadota et af 
1967). It has been found, however, that growing crystals without a mixing of types (a)  
and (d )  is almost impossible with this method; every crystal is more or less a mixed state 
of the two types so that the samples used in early work were not perfect. The quality of 
crystals obtained from the aqueous solution are examined in detail by Tsukuda and 
Okazaki (1972) and Hutchings et a1 (1969). 

For several years the Bridgman method has been employed to obtain crystals. This 
was found to be an improvement on the former method of growing of crystals with single 
type (a) domains, but even so, crystals thus grown from melting still sometimes show 
mixtures of the two types. Further, twins appear easily because the crystal is pseudo- 
cubic with lattice parameter ratio of c /a  = 0.95. One more disadvantage is a stacking 
disorder along the c-axis. Thus samples should be examined carefully. Among crystals 
precipitated from aqueous solution, on the other hand, there occasionally appears 
crystals rich in type (d).  Of those we have so far examined, however, 90-95% single 
domains of type (d )  are the best; a crystal with pure type ( d )  has not yet been produced. 

A sample of size 2 X 2 X 2mm3 used in the present study was cut from a single 
crystal grown by the Bridgman method. By both x-ray diffraction and phonon-Raman 
scattering, the sample was confirmed as havingpure type (a)  structure with neither twins 
nor stacking disorders. The efficacy of phonon-Raman scattering for checking domain 
structures will be discussed elsewhere. 
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Figure 4. Temperature dependence of the peak-to-peak derivative linewidth AH,, for the 
external field H o  parallel (0 = 0") and perpendicular (0 = 90") to the c-axis, measured at 
24 5 GHz The solid lines indicate the extrapolation from the paramagnetic region, it goes 
down to zero. AHpp near T, is shown inset 

EPR measurements were done using a conventional K-band spectrometer. We used 
different cavities for the measurements below and above room temperature. Below 
room temperature, a TEoll cavity mode with a sample rotation mechanism around a 
vertical axis was inserted in a liquid-He cryostat with electronic temperature control. 
For the high-temperature measurements we employed a method proposed by Singer et 
a1 (1961); using a platinum-strip-coated quartz tube resistively heated in a water-cooled 
TEoll cavity. 

4. Experimental results 

As referred to above, both the static susceptibility and the magnetic specific heat of 
KCuF, show broad peaks around 200 K,  suggesting the existence of the magnetic short- 
range order over a wide temperature range above 200 K; thus even room temperature 
is included in the region of short-range order. Above-room-temperature measurements 
are necessary to compare the experimental results with theories for T +  0 ~ 1 .  

Figure 4 shows the dependence of the derivative peak-to-peak linewidth AH,, on 
temperature for the external field Ho parallel and perpendicular to the c-axis measured 
at 24.5 GHz. The rapid increase in AH,, below -40 K indicates the development of 
long-range antiferromagnetic spin ordering, and will not be discussed here. Above 40 K 
we find that AH ( 8  = 0") < AHpp(8 = 907, where 8 is the angle between the external 
field and the c-axis. The lineshape observed at 50 K and 300 K has been confirmed as 
being Lorentzian. The 0 dependence of AH,, measured at 300 K is shown in figure 5 .  
The curve of AHpp versus temperature shows a plateau over the range 300-450 K, which 
indicates that the AH,, from static spin correlations is approaching saturation. Thus 
AH,,(T+ E) is estimated as -5 kOe for t9 = 90" and -3.5 kOe for 0 = 0" by extrapo- 
lating the observed AH,, from the comparatively flat part below -450 K. The ratio 

p 4  
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Figure 5 .  Angular dependence of AH,,, 
obtained at 300 K. 0 is the angle between 
the external field and the c-axis. 

Figure 6. Ratio AH,,(O = 90")/AHP,(0 = 0") plotted as a func- 
tion of temperature. The arrow indicates the position of 1.5, the 
theoretically expected value at high temperatures. 

AHpp( 8 = 9O0)/AHPp( 8 = 0") is plotted in figure 6 as a function of temperature; over the 
range of 300-400 K, this ratio is 1.4. In the c-plane, on the other hand, AHpp does not 
show angular dependence within experimental accuracy. 

5. Discussion and conclusions 

Since KCuF3 has magnetic one-dimensionality with Heisenberg-type exchange inter- 
actions, we must refer to whether there is a diffusive relaxation effect on the EPR line. If 
a one-dimensional diffusive relaxation governs the EPR line, AHpp should have 
(3 cos2 8 - 1)4/3-like angular behaviour with a minimium at 8 = 55" and the line-shape 
at 8 = 0" should depart from Lorentzian. Contrary to this expectation, the experimental 

PP 
linewidth has no anomaly at 8 = 55", as can be seen from figure 5, i.e., the observed AH 
does not show (3 cos2 8 - 1)4/3-like behaviour. Furthermore, the observed lineshape is 
Lorentzian. From these results, we can say that it is not necessary to take acount of the 
one-dimensional diffusive effect on the spin relaxation. Or,  even if the relaxation is 
diffusive, there should be perturbation terms that make spin diffusion ineffective. 

We now compare MpM(0), M f E ( 0 )  and MpD(0). Using the lattice parameters (a  = 
4.14 A, c = 3.92 A), g-values (8, = (811 + g,)/2 = 2.27 andg, = gil= 2.15 determined in 
the present work) a n d J  = J ,  = -203 K, we obtain the second moments as 

Mid@) = lo6  Oe2 MY(0) = los Oe2 MyM(()) = lolo Oe2. 

It becomes clear that the effect of the DM interaction is overwhelmingly larger than the 
other two. Strictly speaking, there arises across term between the DD and AE interactions, 
but the second moment from the cross term does not exceed M f E ( 0 ) .  It can generally 
be shown, on the other hand, that there is no cross term between Mf ' (0 )  and MfE(0) 
(or M,DD(0)). 

We note in passing the amount of the second moment of the inequivalent g-tensor 
and of the hyperfine interaction. The inequivalent g-tensor induces a perturbation 
X' = (gl, - g,)pBHoCSf (where H o  11 z )  and this term produces the second moment 
(gli - g1)2pgH20/2g2 = 3 x lo5 Oe2 at 24.5 GHz ( H ,  = 8 kG). On the other hand, the 
hyperfine constant -lo2 Oe results in the negligible second moment. Thus the con- 
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tribution to line broadening from both the inequivalent g-tensor and the hyperfine is 
negligible, The main origin of line broadening is therefore the DM interaction, so that 
the spin diffusion, even if it governs the spin relaxation process in KCuF3, has no effect 
on the linewidth as introduced in § 2. Thus the angular behaviour of AHpp at high 
temperatures should be reproduced by the angular part of M FM (0), namely by equations 
( l l a ,  b).  The experimental result shown in figure 5 is well reproduced by (2 + sin2 6); 
the ratio AHpp(6 = 9O0)/AHPp(8 = 0') = 1.4 obtained experimentally agrees well with 
the value 1.5 calculated from equation ( l l a ) .  Thus we can identify that d ,  is perpendicular 
to the c-axis. Furthermore, the calculated AHpp from equations (7) and ( l l a )  is approxi- 
mately 6 kOe, which is not far from the extrapolated value AHpp(T+ 00) L- 3.5-5 kOe. 

The dependence of AHpp on temperature is well explained by equation (16~) ;  i.e., 
AHpp becomes narrower with decreasing temperature. Its value extrapolated to T = 0 K 
from the paramagnetic region goes to zero as indicated in figure 4. As far as we know, 
the linewidths of the magnetic compounds in which the DM interaction is absent, whether 
they are low-dimensional or not, do not tend to zero with extrapolating to T = 0 K as 
shown in figure 3. We can point out several cases such as TMMC (Cheung et a1 1978, 
Tuchendler et a1 1979), K2MnF4 (Richards and Salamon 1974, Yokozawa et a1 1978), 
K2CuF4 (Yamada et a1 1983), etc. The line broadening of TMMC and K2MnF4 comes from 
the DD interaction, whereas K2CuF, has both AE and DD interactions. Then their 
linewidths change moderately with the temperature above their respective critical 
regions, as equation (16b) predicts. 

In Heisenberg antiferromagnets in which the DM interaction is not the main origin of 
line broadening, AHpp increases over the critical temperature region above TN. In low- 
dimensional systems such a phenomenon can be seen over a wide temperature range 
above TN, as shown in figure 3 .  In the present case, however, AHpp begins to increase at 
40-42 K, quite close to TN = 39 K as can be seen in figure 4 (inset). Thus, we can say 
that the increase in AHpp over the wide critical region which is expected from its one- 
dimensionality is substantially zero in KCuF3. Over the critical region, a more precise 
treatment of the four-spin correlation functions should be necessary. However, a quali- 
tative argument based on the theory by Soos et al as represented here is useful to point 
out the characteristic behaviours of AHpp with T. 

From the analysis of the observed EPR linewidth of KCuF,, we have shown that the 
DM interaction exists in this system and that this is a major perturbation term for line 
broadening. The angular dependence of the linewidth indicates that d,  i c-axis. Owing 
to this antisymmetric interaction, the spin ordering is no longer exactly antiparallel. 
With crystal symmetry of type (a),  we can easily conclude that d ,  = -d,k, i.e., the 
direction of d ,  reverses alternately along the c-axis. Since d ,  i c-axis, there should arise 
a c-component of spin, which is estimated as Ag/g times the a-component. Taking 
account of 1, and the g-values given above, we estimate that the c-component is approxi- 
mately 10% of the a-component. We therefore propose a new spin structure for KCuF3 
with type (a)  structure, as shown in figure 7. A net weak ferromagnetic moment cannot 
be expected because the directions of the weak moments on each c-axis are opposite to 
each other. 

Direct experimental evidence of this hidden weak moment should be obtained by 
neutron diffraction. Several neutron-scattering studies of KCuF, have been reported in 
§ 1, but none of them referred to the DM interaction and no effort was made to identify 
the hidden weak moment along the c-axis. New magnetic reflections expected from the 
postulated c-component of spin should be very weak; we estimate their intensities to be 
two orders of magnitude smaller than the principal magnetic peaks. Because previous 
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Figure 7. Proposed new spin structure expected from the effect of the 
Dzyaloshinsky-Moriya antisymmetric exchange interaction. + and - 
indicate that the direction of d ,  reverses alternately with d ,  i c-axis. 
White arrows represent the resultant c-component of spin. 

neutron diffraction experiments were not precise enough to detect such small reflections 
(Hirakawa, personal communication), we plan to perform neutron diffraction experi- 
ments using a larger, higher-quality crystal to confirm directly the expected c-component 
of spin. 

The present study has confirmed that KCuF3 is a representative antisymmetric linear 
chain system. However, a serious problem arises when we take account of the simple 
rule to identify the direction of d ,  given by Moriya (1960) from symmetry considerations. 
For the coupling between two ions i and j located at points A and B, he obtained four 
rules. 

(1) When a mirror plane perpendicular to AB bisects AB, d,  I/ mirror plane. 
(2) When there is a mirror plane including A and B, d ,  i mirror plane. 
(3) When a twofold rotation axis perpendicular to AB passes through the midpoint 

(4) When there is an n-fold axis ( n  2 2) along AB, d ,  1 1  AB. 
of AB, d ,  I twofold axis. 

Let us apply this rule to KCuF,. Two adjacent Cu2+ ions on thec-axis are denoted Cu(A) 
and Cu(B), as shown in figure 1. The resuIts are as follows. 

(1) There is no mirror plane perpendicular to AB that bisects AB. This rule is 
therefore out of the question. 

(2) There are mirror planes including A and B, i.e., the (100) plane and equivalent 
planes. Thus d I c-axis. 

( 3 )  There are twofold axes perpendicular to AB which pass through the midpoint of 
AB; i.e., the [110] axis and equivalent directions satisfy this condition. Thus 
d ,  I [110] and equivalent directions; i.e., d ,  I c-axis or d ,  / I  c-axis. 

(4) There is a twofold axis along AB, namely, the line of Cu(A)-Cu(B) bonding. 
Then d,  / I  c-axis. 

We therefore get conflicting results in that d ,  I c-axis and d ,  1 1  c-axis, in which case one 
concludes that d ,  = 0. However, d ,  # 0 and d ,  i c-axis are clearly confirmed by our 
experiments, so we can question the crystal structure determined earlier (Tsukuda and 
Okazaki 1972). 

We have recently re-examined the crystal structure of a type ( a )  sample by x-ray 
diffraction and have found new superlattice reflections that were not observed by 
Okazaki et al. In our opinion, these new reflections are due to the improved sample 
quality and suggest that the crystal symmetry should be lower than that reported so far. 
Then it is possible to get d,, # 0 with d ,  I c-axis from the symmetry consideration. A 
detailed x-ray analysis of crystal symmetry is now in progress and the results will be 
reported elsewhere. 
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Appendix 1 

We show three components of the DM interaction, secular and nonsecular parts. The 
coordinate system is as follows. [ X Y Z ]  are fixed to the crystal axes [aac] with Z 11 c, and 
[xyz]  are defined with Ho /I 2. 8 and Q, are polar and azimuthal angles of Ho with respect 
to the c-axis. 

where a, /3 = x, y ,  z ,  GFM is the secular term and both GYM and G!!? are nonsecular 
terms. These three components are 

GFM = 4iA;y(STS; - S;S:) 
GDM = I  *(Ay - idr)(S:Sf - SfS:) 

GET = h(As + iAr)(S;Sf - SfS;) 

A;;y = h(d f  sin 8 cos Q, - d f ;  sin 8 sin Q, + d; cos 8 )  

Ay =df sin Q, - d f ;  cos Q, 

Ay = d f  COS 6 COS Q, - d f ;  COS 8 sin Q, + d$ sin 8. 

in which 

We define g, = [ G EM, M ,  ] ; each g ,  is given as 

The second moment MFM ( J / k T )  is 

Thus, M y M ( J / k T )  cc ((Sfsf - SfST)2). 
In the same way, 

M t E ( J / k T )  or M F D ( J / k T )  cc ((SfSf + SfST)’) 

is derived. 

Appendix 2 

When each spin is at a centre of inversion, A, = --Aik because there are sitesj and k which 
satisfy rij = -rik. After Fourier transformation, the secular part of the DM interaction 
yields 

where AGy = C j  AtY exp(iqr,). 
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When we consider spins on the c-axis, 

A:y = A y  exp(iqrii) + A;: exp(iqrik) + . . . 
= Aiy exp(iqrQ) - diy exp( -iqrii) + . . . 
= sin qc + sin 2qc + . . .. 

Then A;YY becomes zero for q = 0. Since the diffusional relaxation enhances the 
q = 0 components of the secular part, AGY + 0 with q+ 0 means that (gaga) vanishes 
with q- 0. Thus we cannot expect an enhancement of the secular part of the DM 
interaction. 
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